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SUMMARY 
This paper presents the development of a parabolic numerical procedure for rotating flows and its 
applications to three-dimensional viscous rotating flows. The formulation is based on the Navier-Stokes 
equations in general co-ordinates fixed on a rotating frame, so that the rotation effect is included in the 
guess-correct process. The use of body-fitted curvilinear co-ordinates makes it easier to handle the complex 
geometries of turbomachinery components. In the present work a k--E turbulence model was used for the 
three-dimensional numerical tests. The algorithm is equally applicable to incompressible and compressible 
flows. Comparisons of the predicted results with the experimental data were reasonably good, and the 
solutions were stable to rotational speeds up to at least 14000 rpm. 
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INTRODUCTION 

Over the past several decades much effort has been devoted to developing accurate and efficient 
numerical algorithms suitable for predicting the flow fields in turbomachinery. Earlier work 
usually began with the assumption of inviscid flow, which made it much easier and solvable 
without the help of modern computers. Reviews of the inviscid flow simulations can be found in 
several One of the biggest drawbacks is that inviscid models fail to predict some 
important phenomena of rotating flows, such as secondary flows and jet/wake throughflow 
patterns. 

A number of viscous flow simulations of rotating  channel^^-^ as well as centrifugal impel- 
l e r ~ ' - ~  have been reported. Most of them are based on the solution of parabolized Navier-Stokes 
equations and a parabolic numerical procedure. Several researchers4- applied the parabolic 
numerical procedure known as the SIMPLE algorithm" to the numerical simulations of rotating 
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flows. However, the method failed to predict rotating flow fields at high rotation speed. The 
reason is that the Coriolis force is important for generating some distinct flow phenomena such as 
secondary flows and jet/wake flow patterns. The original parabolic numerical procedure does not 
explicitly include its influence in the guess-correct process. 

Recently the authors” reported a new pressure-based numerical procedure as well as its 
application to two-dimensional rotating flow computations. The numerical procedure was 
inspired by the generalized pressure-based numerical procedures proposed by RhieI2 and 
Peric,I3 and includes the effect of rotation from the very beginning of the derivation. However, 
most rotating flows are three-dimensional in nature, and some flow phenomena such as second- 
ary flows cannot be predicted with two-dimensional flow calculations. In the present work 
a general form of the parabolic numerical procedure for three-dimensional (3D) rotating flows is 
developed. This paper presents a description of the procedure and compares the numerical results 
with experimental results for the rotating flows tested by Eckardt,14, and Wagner and 
Velkoff.’ 

GOVERNING EQUATIONS 

In the present research, a body-fitted curvilinear co-ordinate system is used to handle the 
geometrical complexity common to turbomachinery components. There are various ways to 
derive the governing equations in curvilinear co-ordinates. In order to have the strong conserva- 
tion form of the differential equations, the Cartesian base vectors are employed as a fixed basis, i.e. 
Cartesian components of vectors and tensors are used. Therefore, it is convenient to transform the 
governing equations from the Cartesian co-ordinate system to a general co-ordinate system. The 
time-averaged governing equations in Cartesian co-ordinates in a rotating reference frame are 
written as 

where &,jk is the alternating or permutation symbol. 

The eauation is written as 
For compressible flows, a simple adiabatic energy equation is used to get the local temperature. 

(3) 

where h is enthalpy and U is the local wheel speed. The density is calculated using the state 
equation. 

In equation (2) the effective viscosity /JI is equal to the sum of laminar viscosity p1 and eddy 
viscosity p,. The eddy viscosity pt is determined through the relation 

k2 
A = C, P; 9 (4) 

where the turbulence kinetic energy k and the turbulence energy dissipation rate E are calculated 
using the turbulence k-c equations 
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Here G is the production rate of turbulence kinetic energy. Even though several modified 
turbulence k--E models for rotating flows have been proposed, the authors found that the regular 
k--E model worked as well as the modified models." Thus the regular k--E model is still applied 
here. The coefficient values of the k--E turbulence model employed in the present work are shown 
below.' '* 

0.09 1.44 1.92 1.0 1.3 0.4187 9.0 

To facilitate co-ordinate transformations, the transport equations (2), ( 5 )  and (6) can also be 
written in a general form, for an arbitrary variable 4, as 

GENERAL CO-ORDINATES 

In the present work a general co-ordinate system, i.e. a body-fitted co-ordinate system, is used to 
handle the complex geometries of most rotating flows. Governing equations can be transformed 
into curvilinear co-ordinates according to a general transformation 

ti=5'(x1, x2, x3), (8) 

where the 5 i ' ~  represent general co-ordinates. 
Using standard transformation formulae, the transport equation (7) can be expressed as 

(9) 
where the extra source term sb comes from non-orthogonal co-ordinate systems, the scaled 
contravariant velocity components are defined as 

and the coefficients Aij are written as 

The continuity equation becomes 

a 
- (pU,) = 0. at j 

Many internal flows have a predominant flow direction, along which diffusion terms are very 
small and negligible in comparison to convection terms. The general transport equation (9) can be 
parabolized in the predominant flow direction by neglecting the diffusion terms in that direction. 
It is much easier to solve the parabolized equations than the full Navier-Stokes equations 
because a 'one-way' co-ordinate appears in the predominant flow direction, and a space- 
marching technique can be used to sweep through a three-dimensional flow field using two- 
dimensional computer storage. 
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DISCRETIZATION 

A finite-volume formulation is applied to obtain the discretized equations, which express the 
conservation principle for a control volume. The general transport equation (9) is integrated over 
a control volume, and piecewise profiles are used to evaluate the integrals. The power-law 
differencing schemelg is selected to approximate the values on the control volume faces in terms 
of nodal values, so that the discretized equations have the following form: 

A P 4 P = A N 4 N  + A s h  + A E $ E  f A W 4 W  + A D d D  + AWhJ + (s'+ Js6)At1 A t 2  At3. (13) 
Here P represents the grid point, which has the grid points N, S, E, W, D (downstream) and 
U (upstream) as its neighbors. 

PRESSURE-BASED NUMERICAL METHOD FOR THREE-DIMENSIONAL 
ROTATING FLOWS 

Physically, rotation has a significant impact on the flows inside turbomachinery components. 
This should be reflected mathematically, which means that the numerical procedures used to 
simulate the flow fields should take into account the influence of rotation on the computations. In 
the present study, the basic idea of the pressure based numerical method will be applied to 
rotating flows so that a new numerical procedure will be developed, which does consider the effect 
of rotation on numerical computations. 

Pressure correction 

Comparing equations (2) and (9) with equation (13), we can write the discretized momentum 
equations as 

[: 0 Ip 0 AP "]i i ! ] = x A i  [ ;!I+[ ~ ~ } A t 1 A t 2 A < 3 - [  ;::}JAt1At2At3 PX, 

-[ -2522 2:3 -? 2x21 ~ ~ ~ l ] [ ! ~ ] J A ( 1 A < 2 A t 3 ,  0 (14) 

where the source term S"s can be expressed as 

S = si - J&irnk ~k j ,  52,52j X, , (15) 

and the si's are defined by the so in equation (9). 

field does satisfy the momentum equation 
Based on the estimated pressure field p*, equation (14) can be solved and the resulting velocity 

[: 0 ip 0 Ap " I ( i i [ = x A i  [ !![+[ i!}At1At2At3-[ !zI[JA<1A<2A{3 PX, 

0 -2R3 2R2 -[ -2522 2n3 2521 0 -2Q1]{ 0 !:[JAt1A<2A{3. (16) 



3-D VISCOUS ROTATING FLOWS 369 

The partial derivatives of pressure are transformed to curvilinear co-ordinates as 

r:, r:, el 
(17) 

In order to improve the estimated pressure p* so that the resulting velocity field satisfies the 
continuity equation, the pressure correction p' is assumed to have the form 

p = p* + p'. (18) 
Then the corresponding velocity corrections can be obtained in a similar manner, i.e. 

(19) 

Inserting equations (17)-(19) into equation (14) and comparing it with equation (16), we get 

where 

as 

P= [I: 8' C2 :: D2 r:] , 
0 4 2 3  Q2 23 A t 1  A t 2  A t 3  

AP 
E= 

a t  
axi B'=-J-At' A t 2  A13/AP, 

D'=-J-Ar' at A t 2  At3/Ap. 
axi 

Substituting equation (19) into equation (20), we obtain the expressions for velocity corrections 

The relationship between the Cartesian components and the scaled contravariant components 
can be written in a matrix form as 
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t:, r:, r:, 
(24) 

Substituting equations (20) and (22) into equation (23), we obtain the expressions for the scaled 
contravariant velocity components as 

Therefore, the relationship between the corrections of the scaled contravariant velocity compo- 
nents and pressure is expressed as follows: 

[ ~ ~ } = v ( I + E ) - 1 P [  ::}. Pt' 

After some algebraic operations, we can get the expression for the coefficient matrix, 

[ g M i j B i  -Mi,C' at 
ax 

where 

and 
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If near-orthogonal co-ordinates are used, off-diagonal terms are so small compared with 
diagonal pressure gradient terms that they can be neglected. The approximate expression for 
equation (27) can be written as 

[g M,B' 

V(I+E)- 'P=- M 0 

l o  
0 

0 

For E = 0 this reduces to the usual equations relating velocity corrections to pressure changes, 
but for E #O it means that the Coriolis terms are included directly in the pressure correction, not 
explicitly as they would be if made source terms. 

The expression given by equation (30) must be used with the global and local continuity 
conditions to correct the pressure. First the global average pressure correction is discussed. 

Global average pressure correction. The global continuity condition, 

Min=C P U ~  At' At2,  (3 1) 

is employed to obtain the average pressure correction on the current cross-stream plane. Here the r3  direction is assumed to be aligned with the throughflow direction. By inserting the expression 
coming from equations (25) and (30), i.e. 

into equation (31), the average pressure gradient can be determined, 

The global pressure correction is first conducted to accelerate the establishment of the correct 
pressure field. Then the continuity equation is used to obtain the pressure correction equation 
locally. 

Local pressure correction. By integrating the continuity equation (12) over a control volume, 
the local continuity condition can be written as 

By substituting equation (25) into equation (34), the above continuity condition is written with the 
pressure correction as 

[Jsp{dC2dt3, dC3dt1, dC'dt2}V(I+E)-1P (35) 
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where 

~ { d t ~ d t ~ , d t ~ d 5 ~ , d t ~ d t ~ }  U2 . (36) I::[ 
The central differencing scheme is used to discretize equation (35) so that the resulting equation, 
i.e. the pressure correction equation, can be expressed as 

where 
A P P ~  = ANPL + AS P; + A E P ~  + Aw pk + ADpb + Aup; + sP, (37) 

A E  p J  at2MijCiA<3At1] , 
e or w w = [m 

, 

~p=C(pU:)n-(pU:)sI A t 2 A t 3  + C(~u:)e-(~u:)wI A t 3  A t ’  + C(pu?),-(pu:)uI At’  At2 + G ,  
where the source term ip = 0 if the off-diagonal pressure gradient terms are neglected. 

During the space-marching process the two-dimensional form of the pressure correction 
equation is used, which is derived simply by assuming that p b  = p b  = 0. For purely parabolic flows 
the justification for this assumption is obvious: the upstream pressure Pu is known and thus 
Pb = 0, while the downstream pressure PD has no upstream impact (Pb = 0). For flows which are 
only partially parabolic, such as those in strongly curved ducts and turbine cascades, a three- 
dimensional elliptic pressure correction is carried out after a complete forward marching pass by 
solving equation (38) with the updated local mass imbalance. 

Numerical solution sequence 

appropriate choice to use. The numerical solution sequence is described as follows: 
Since the parabolized Navier-Stokes equations are dealt with, a space-marching method is an 

(1) Velocities are obtained by solving the momentum equation (14), using an approximate 
pressure field from an initial guess or a previous iteration. 

(2) The global pressure correction is performed using equation (33). The two-dimensional form 
of the pressure correction equation (37) obtained from the local continuity condition is 
solved to correct the pressure field. Subsequently velocities are adjusted using equation (26). 

(3) For compressible and turbulent flows, scalar variables such as T, p, k and E are determined. 
(4) Steps 1-3 are repeated until satisfactory convergence is achieved. Here, the ratio of the sum 

(5) Shift to next downstream plane and repeat steps 1-4 until a forward marching sweep is 

Since the present study focuses on the development of the pressure-based method for 3D 
rotating flows, the single-pass, space-marching procedure described above is applied to the 
numerical computations. Also, the ‘flare’ approachZo is used to take care of possible reverse flows 
in the throughflow direction. 

of mass residuals and inlet mass flow rate is used as the convergence criterion. 

completed. 
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Computational arrangements and boundary conditions 

A non-staggered variable arrangement is utilized to minimize the amount of geometrical 
information required to be stored. For the finite-volume approach, it is necessary to evaluate 
velocity components at cell faces. In early unsuccessful attempts to use non-staggered variable 
arrangements, linear interpolation was used to approximate these face values and this led to 
pressure oscillations. In the present work, a special interpolation scheme proposed by Rhie and 
Chowz1 is used to overcome the difficulty. The interpolation scheme was described by Peric13 as 
follows: to evaluate a velocity component at a cell face, interpolate using the discretized 
momentum equation (13) for the two neighbouring nodes. Instead of interpolating the pressure 
gradients, use a pressure gradient centred about the cell face. In this manner a five-point form for 
the pressure equation is obtained. 

In the present work, a grid mesh is arranged so that the mesh defines the control volume 
boundaries and the computational nodes are then put in the centre of each control volume. The 
main advantage of this arrangement is that it is much easier to treat different types of boundary 
conditions. For example, the approximate boundary condition for pressure is no longer neces- 
sary. 

In the case of turbulent flows calculation of the stresses on the walls needs special attention, 
since the k--E turbulence models apply only to fully turbulent flows and near no-slip walls the flow 
is not fully turbulent. Due to the existence of boundary layers, across which steep variations of 
flow properties occur, the standard k-c turbulence models become inadequate. Here, the ‘wall 
function’ approach” is applied to bridge the regions. The expressions for wall shear stress as well 
as boundary conditions for k and E are the same as those given in Reference 11. 

NUMERICAL COMPUTATIONS 

Three-dimensional numerical simulations of rotating flows have been conducted using the 
procedure just discussed and compared with two different sets of experimental data. Among 

s e c t i o n  10 

section 30 

Figure 1. Wagner’s 3D channel 
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them, the data of Wagner and Velkoff16 were taken in a geometrically simple apparatus, while 
Eckardt’s data 14* l 5  came from a centrifugal impeller which was geometrically complicated. 

Three-dimensional channel pow 
Wagner and Velkoff l6 designed the testing apparatus (Figure 1) to study the secondary flows in 

a rotating radial channel. The test section was mounted on a rotating horizontal table. The 
channel, using air as the working medium, was 0-864 m in length with a contracting section at the 
exit to minimize the exit-flow effect. The rectangular cross section had a height (h) of 0.0445 m 
and a width (b) of 0121 m. A flow velocity (W,) of about 15-3 m s- was chosen to achieve the 
desired Reynolds number ( W,h/v) of 46 OOO. Wagner and Velkoff presented experimental results 
for five rotation numbers (sZb/W,=0-07, 0.10,0*14,0-18 and 022). The present study treated the 
flow as incompressible, and employed a 11 x 17 grid pattern in the cross-stream direction with 45 
steps downstream starting from the duct entrance where a uniform streamwise velocity was 
assumed without secondary velocity. Grid lines are clustered near the entrance and the walls by 
using Roberts’ stretching functions2’ in order to resolve the rapid variation of physical variables 
such as velocity. 

For rotation numbers 0.07 and 0.22 (0 = 100 and 300 rpm), the data of Wagner and Velkoff l6 

were compared at 0.65 m (cross section 32) from the entrance with predicted streamwise velocities 
at the horizontal centreline. As seen in Figure 2, the numerical predictions were satisfactory. 

The predicted cross-stream velocities at the horizontal centreline at 0.73 m (cross section 36) 
from the entrance are compared with the measured data for rotation speeds of 100 and 300 rpm in 
Figure 3. As can be seen, the numerical simulations yielded reasonably good agreement with the 
experiment. It is quite apparent that the cross-stream velocity components increase linearly with 
rotation, and the proportionality factor is about 100/sZ.’6 In order to visualize the secondary flow 
pattern, the predicted cross-stream velocity vector fields at 0.24 and 0.73 m (cross sections 12 and 
36) were plotted in Figure 4 for rotation speeds of 100 and 300 rpm. They showed the presence of 
two similar longitudinal vortices, one in the upper half and the other in the lower half of the cross 
section. A qualitative comparison of predicted secondary velocity vectors and experimental ones 
is given in Figure 5, which shows that the prediction gave a better description of secondary flow 
than the measurements taken by Wagner and Velkoff. Finally, the three-dimensional velocity 
fields at cross sections 12 and 36 visualized in Figure 6 for rotation speeds of 100 and 300 rpm. 

Eckardt ’s centrifugal impeller 

This section describes the application of the present method to turbulent air flow in a radial 
discharge impeller (Figure 7), which was studied experimentally by Eckardt.14- l5  The impeller 
was run at design point operating conditions defined as rotational speed = 14 OOO rpm and flow 
rate = 5-31 kg s-’. In this case, the Reynolds number Re = 5.3 x lo5 and the rotation number 

The compressible flow computation was carried out on the single blade channel shown 
schematically in Figure 7. Detailed information on the impeller geometry can be found in 
Reference 23. A constant area annular section was added upstream of the impeller so that uniform 
boundary conditions could be specified at the inlet. Periodic boundary conditions were also 
applied to this section. There were 15 grid points in the circumferential direction, 15 grid points in 
the spanwise direction, and 130 grid points in the throughflow direction. Three of the 15 grid 
points were located inside the top clearance between the blade tip and the shroud surface. 
A stretching transformation” was used to have coarse grid spacings near pressure and hub sides 
and fine grid spacings near suction and shroud sides. The reason for employing such a mesh 

Ro = 1.77. 
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ti: = i-=>I 
I I 1 

Figure 5. Qualitative comparison of predicted and experimental secondary flows. (Left) predicted secondary flow at 
section 36, a= 300 rpm. (Right) Wagner's experimental data and sketch 

90 90 

80 
70 

50 50 
60 60 

90 90 
80 80 
70 70 
60 60 
50 50  
40 40  
30 30 
20  20 

2 .f 
. 5  

Figure 6. Predicted velocity vectors at sections 12 and 36. (Left) 100 rpm. (Right) 300 rpm 

arrangement is that the velocity distributions obtained by EckardtI5 showed potential flow 
character in the part of the flow field from mid-passage to The region near the pressure 
side showed a more gradual increase in velocity away from the surface. In the present work, the 
wall-function method was used to handle solid walls. The first requirement when using the 
wall-function method is that the grid points adjacent to the walls have to be sufficiently remote 
from the walls so that the viscous effects are entirely overwhelmed by the turbulent ones. Having 
coarse grid spacings helps to put the grid points out of the viscous sublayer. 
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Figure 7. The geometry and grid of an Eckardt’s impeller channel 

Figure 8. The cross section planes where the velocity is visualized and compared with Eckardt’s data 

u PI #I- 

Figure 9. Velocity distribution at measurement area 1. (Left) Eckardt’s data (Right) Predicted result 
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Figure 10. Velocity distribution at measurement area 2. (Left) Eckardt’s data (Right) Predicted result 
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Figure 11. Velocity distribution at measurement area 3. (Left) Eckardt’s data. (Right) Predicted result 
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Figure 12. Velocity distribution at measurement area 4. (Left) Eckardt’s data. (Right) Predicted result 
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The predicted results were compared with the intra-blade-row velocity and shroud surface 
pressure distribution taken by Eckardt. The velocity fields were visualized and compared on 
surfaces 1-5 (see Figure 8). 

Comparisons of the predicted primary velocity profiles with the experimental data at the five 
surfaces are given in Figures 9-13. The numerical data have been plotted in the same format used 
by Eckardt. Reasonably good agreement is shown at all locations. Figures 9 and 10 show that the 
simulated flow, as compared with the experimental data, is also regular at a comparatively low 
blade loading and preserves its potential character. From the predicted velocity profiles at surface 
2 (Figure lo), a little velocity distortion can be observed in a small area near the shroud surface 
where no experimental data were available. 

Y / t  

Figure 13. Velocity distribution at measurement area 5. (Left) Eckardt’s data. (Right) Predicted result 

Figure 14. Pressure contours along the shroud surface. (Left) Eckardt’s data. (Right) Predicted result 
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Both predicted and experimental results show that the velocity distortions of the impeller flow 
pattern start to appear near the shroud surface a short distance downstream at surface 3 
(Figure 11). In the rest of the flow field, the potential flow pattern appears to be preserved. 

The velocity distortions rapidly enlarge downstream and develop into jet/wake flow patterns, 
as shown in Figures 12 and 13 for surfaces 4 and 5, respectively. The numerical computations 
successfully predicted the wake regions at two surfaces, and gave results which were comparable 
with the experimental data. 

The predicted and measured pressure contours along the shroud surface are presented and 
compared in Figure 14. The comparison looks reasonably good. 

CONCLUSION 

A new pressure-based numerical method for three-dimensional viscous rotating flows has been 
developed and presented. The parabolized Navier-Stokes equations are solved with a space- 
marching technique, and body-fitted curvilinear co-ordinate systems are employed to handle the 
general complexity of geometries which most rotating flows feature. The present method was 
applied to a rotating channel and a centrifugal impeller, and the numerical results showed 
reasonably good agreement with the experimental data. Both compressible and incompressible 
flows were treated successfully and rotation speeds as high as 14000 rpm were readily handled. 
The characteristic secondary flows and jet/wake flow patterns were accurately simulated. 
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APPENDIX: NOMENCLATURE 

A 
G 
h 
J 
k 
mP 
RO 
Re 
P 
4 
S@ 
U 
ui 
ui 
Xi 
& 

Ei jk 

P 

R 
4 

coefficient in the finite-difference equations 
production rate of turbulence kinetic energy 
enthalpy 
Jacobian of curvilinear transformation 
turbulent kinetic energy 
mass residual 
rotation number 
Reynolds number 
static pressure 
source term in a general transport equation 
source term coming from non-orthogonality 
local wheel speed 
Cartesian velocity components 
scaled contravariant velocity components 
Cartesian co-ordinate components 
turbulent energy dissipation 
alternating or permutation symbol 
density 
an arbitrary variable 
rotation speed 
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A t  

Cartesian components of rotation speed 
laminar viscosity 
C,  pK ’/e, turbulent viscosity 
pI + ji,, effective viscosity 
diffusion coefficient 
curvilinear co-ordinate components 
finite-difference mesh spacings 

Subscripts 

e, w, n, s, u, d references to control volume faces 
P, E, W, N, S, U, D references to control point and neighboring grid points 
i,j, k Cartesian co-ordinate direction indices 

Superscripts 
* 
I 

- 
current or guessed value 
correction value 
average value 
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